Creating agents that can both appropriately respond to conversations and understand complex human linguistic tendencies and social cues has been a long standing challenge in the NLP community. A recent pillar of research revolves around emotion recognition in conversation (ERC); a sub-field of emotion recognition that focuses on conversations or dialogues that contain two or more utterances. In this work, we explore an approach to ERC that exploits the use of neural embeddings along with complex structures in dialogues. We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language that uses first-order like logical rules, that when combined with data, define a particular class of graphical model. Additionally, PSL provides functionality for the incorporation of results from neural models into PSL models. This allows our model to take advantage of advanced neural methods, such as sentence embeddings, and logical reasoning over the structure of a dialogue. We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement. With these results, we provide an extensive qualitative and quantitative analysis over the DailyDialog conversation dataset.
翻译:创建既能对对话作出适当反应又能理解复杂的人类语言倾向和社会提示的代理物是国家语言平台社区长期面临的一个挑战。最近的研究支柱是:在对话中情感识别(ERC);情感识别的子领域,侧重于包含两个或两个以上语句的对话或对话。在这项工作中,我们探索了一种利用神经嵌入与复杂的对话结构相结合的方法。我们在一个称为“概率性软逻辑(PSL)”的框架中采用了我们的方法,这是一种使用第一阶语言(如逻辑规则)的标语,在与数据相结合时,定义了特定的图形模型类别。此外,PSL为将神经模型的结果纳入 PSL模型提供了功能。这使我们的模型能够利用先进的神经方法(如句嵌入),以及对话结构的逻辑推理。我们把我们的方法与最先进的神经系统(PSL)进行比较,我们看到了近20%的改进。根据这些结果,我们为DaiDalDalloglogloging数据集提供了广泛的定性和定量分析。