Selective classification, in which models can abstain on uncertain predictions, is a natural approach to improving accuracy in settings where errors are costly but abstentions are manageable. In this paper, we find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities between various groups within a population, especially in the presence of spurious correlations. We observe this behavior consistently across five vision and NLP datasets. Surprisingly, increasing abstentions can even decrease accuracies on some groups. To better understand this phenomenon, we study the margin distribution, which captures the model's confidences over all predictions. For symmetric margin distributions, we prove that whether selective classification monotonically improves or worsens accuracy is fully determined by the accuracy at full coverage (i.e., without any abstentions) and whether the distribution satisfies a property we call left-log-concavity. Our analysis also shows that selective classification tends to magnify full-coverage accuracy disparities. Motivated by our analysis, we train distributionally-robust models that achieve similar full-coverage accuracies across groups and show that selective classification uniformly improves each group on these models. Altogether, our results suggest that selective classification should be used with care and underscore the importance of training models to perform equally well across groups at full coverage.


翻译:选择性分类(模型可以对不确定的预测不作判断)是一种自然的方法,可以提高错误代价高昂,但偏差是可以控制的环境下的准确性。在本文中,我们发现选择性分类虽然可以改善平均偏差,但可以同时扩大人口中不同群体之间现有的准确性差异,特别是在存在虚假关联的情况下。我们在整个五个愿景和NLP数据集中一致观察到这种行为。令人惊讶的是,增加弃权甚至可以减少某些群体的准确性差异。为了更好地了解这一现象,我们研究差值分布,它捕捉到模型对所有预测的信心。关于对等差值分布,我们证明选择性分类单调提高或降低准确性是否完全取决于全面覆盖的准确性(即无任何弃权),以及分配是否满足了我们称之为左方和方数据集的属性。我们的分析还表明,选择性分类往往会放大完全覆盖的准确性差异。我们的分析激励着这个现象,我们培训分布式的破裂模型能够实现类似的完全覆盖。关于对准差值的分布式分布式模型,我们证明,我们各个组之间是否完全覆盖性地改进了准确的分类,并表明,每个组之间必须统一地完善地改进这些分类。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
42+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
5+阅读 · 2019年11月22日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员