Reinforcement learning shows great potential to solve complex contact-rich robot manipulation tasks. However, the safety of using RL in the real world is a crucial problem, since unexpected dangerous collisions might happen when the RL policy is imperfect during training or in unseen scenarios. In this paper, we propose a contact-safe reinforcement learning framework for contact-rich robot manipulation, which maintains safety in both the task space and joint space. When the RL policy causes unexpected collisions between the robot arm and the environment, our framework is able to immediately detect the collision and ensure the contact force to be small. Furthermore, the end-effector is enforced to perform contact-rich tasks compliantly, while keeping robust to external disturbances. We train the RL policy in simulation and transfer it to the real robot. Real world experiments on robot wiping tasks show that our method is able to keep the contact force small both in task space and joint space even when the policy is under unseen scenario with unexpected collision, while rejecting the disturbances on the main task.
翻译:强化学习展示出解决复杂接触丰富的机器人操作任务的巨大潜力。 然而,在现实世界中使用RL的安全性是一个关键问题,因为当RL政策在培训或不可见的场景中不完善时,可能会发生意外的危险碰撞。在本文中,我们建议为接触丰富的机器人操作建立一个接触安全强化学习框架,这种操作既能维护任务空间,又能维护联合空间的安全。当RL政策造成机器人臂和环境之间意外碰撞时,我们的框架能够立即发现碰撞并确保接触力小。此外,终端效应器被强制执行符合接触丰富的任务,同时保持对外部扰动的强大。我们在模拟过程中对RL政策进行了培训,并将它转移到真正的机器人身上。关于机器人擦拭任务的真正世界实验表明,我们的方法能够将接触力量留在任务空间和联合空间中,即使在政策处于意外碰撞的不可知的情景下,但同时又拒绝主要任务的干扰。