Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems whose coefficient matrix is the Laplacian matrix of a weighted graph. The solution of the linear system can be interpreted as the potentials of an electrical flow. Kelner, Orrechia, Sidford, and Zhu (STOC 2013) give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles (cycle toggling). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem, which has been conjectured to be difficult for dynamic algorithms by Henzinger, Krinninger, Nanongkai, and Saranurak (STOC 2015). The conjecture implies that a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an $\tilde{O}(m^{1.5})$ time cut-toggling algorithm for solving Laplacian systems. Furthermore, if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, the running time can be reduced to $O(m^{1+\epsilon})$ for any $\epsilon > 0$. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart.
翻译:在过去的二十年中,理论算法的一个重要研究方向就是解决系数矩阵为带权图的拉普拉斯矩阵的线性系统。线性系统的解可以被解释为电流的电势。Kelner,Orrechia,Sidford和Zhu(STOC 2013)提出了一种组合优化的近线性级别的算法,该算法在保持基尔霍夫电流定律不变的情况下,通过更新沿着循环的流(循环切换)逐步实施基尔霍夫电势定律。在本文中,我们考虑一种双重版本的算法,该算法维护基尔霍夫电势定律,并逐步实施基尔霍夫电流定律,即通过割点的割切换算法:每个迭代通过相同的量更新跨越一棵生成树的基本割中一侧的所有电势。我们证明了这个双重算法也可以在近线性迭代次数内运行。然而,我们将割切换抽象为一个自然的数据结构问题,该问题可以通过在线向量-矩阵-向量问题来减少,这个问题已经被Henzinger,Krinninger,Nanongkai和Saranurak(STOC 2015)猜测为对于动态算法而言是难解的。这个猜想意味着一个直接的割切换算法的实现需要大致的线性时间每次迭代。为了规避下界,我们一起批量更新步骤,同时执行它们而不是依次执行它们。适当选择批处理可以导致$\tilde{O}(m^{1.5})$时间的割切换算法来解决拉普拉斯系统。此外,如果我们对图进行稀疏化,并在_batching_和稀疏化的基础上递归地调用我们的算法,则可以将运行时间降低为对于任何$\epsilon > 0$,$O(m^{1+\epsilon})$。因此,双重割切换算法可以实现(几乎)与其原始的循环切换算法相同的运行时间。