Unlike traditional mesh-based approximations of differential operators, machine learning methods, which exploit the automatic differentiation of neural networks, have attracted increasing attention for their potential to mitigate stability issues encountered in the numerical simulation of hyperbolic conservation laws. However, solutions to hyperbolic problems are often piecewise smooth, rendering the differential form invalid along discontinuity interfaces and limiting the effectiveness of standard learning approaches. In this work, we propose lift-and-embed learning methods for solving scalar hyperbolic equations with discontinuous solutions, which consist of (i) embedding the Rankine-Hugoniot jump condition within a higher-dimensional space through the inclusion of an augmented variable in the solution ansatz; (ii) utilizing physics-informed neural networks to manage the increased dimensionality and to address both linear and quasi-linear problems within a unified learning framework; and (iii) projecting the trained network solution back onto the original lower-dimensional plane to obtain the approximate solution. Besides, the location of discontinuity can be parametrized as extra model parameters and inferred concurrently with the training of network solution. With collocation points sampled on piecewise surfaces rather than distributed over the entire lifted space, we conduct numerical experiments on various benchmark problems to demonstrate the capability of our methods in resolving discontinuous solutions without spurious numerical smearing and oscillations.
翻译:暂无翻译