Motivated by recent progress in quantum hardware and algorithms researchers have developed quantum heuristics for optimization problems, aiming for advantages over classical methods. To date, quantum hardware is still error-prone and limited in size such that quantum heuristics cannot be scaled to relevant problem sizes and are often outperformed by their classical counterparts. Moreover, if provably optimal solutions are desired, one has to resort to classical exact methods. As however quantum technologies may improve considerably in future, we demonstrate in this work how quantum heuristics with limited resources can be integrated in large-scale exact optimization algorithms for NP-hard problems. To this end, we consider vehicle routing as prototypical NP-hard problem. We model the pricing and separation subproblems arising in a branch-price-and-cut algorithm as quadratic unconstrained binary optimization problems. This allows to use established quantum heuristics like quantum annealing or the quantum approximate optimization algorithm for their solution. A key feature of our algorithm is that it profits not only from the best solution returned by the quantum heuristic but from all solutions below a certain cost threshold, thereby exploiting the inherent randomness is quantum algorithms. Moreover, we reduce the requirements on quantum hardware since the subproblems, which are solved via quantum heuristics, are smaller than the original problem. We provide an experimental study comparing quantum annealing to simulated annealing and to established classical algorithms in our framework. While our hybrid quantum-classical approach is still outperformed by purely classical methods, our results reveal that both pricing and separation may be well suited for quantum heuristics if quantum hardware improves.
翻译:暂无翻译