Querying the shortest path between two vertexes is a fundamental operation in a variety of applications, which has been extensively studied over static road networks. However, in reality, the travel costs of road segments evolve over time, and hence the road network can be modeled as a time-dependent graph. In this paper, we study the shortest path query over large-scale time-dependent road networks. Existing work focuses on a hierarchical partition structure, which makes the index construction and travel cost query inefficient. To improve the efficiency of such queries, we propose a novel index by decomposing a road network into a tree structure and selecting a set of shortcuts on the tree to speed up the query processing. Specifically, we first formally define a shortcut selection problem over the tree decomposition of the time-dependent road network. This problem, which is proven to be NP-hard, aims to select and build the most effective shortcut set. We first devise a dynamic programming method with exact results to solve the selection problem. To obtain the optimal shortcut set quickly, we design an approximation algorithm that guarantees a 0.5-approximation ratio. Based on the novel tree structure, we devise a shortcut-based algorithm to answer the shortest path query over time-dependent road networks. Finally, we conduct extensive performance studies using large-scale real-world road networks. The results demonstrate that our method can achieve better efficiency and scalability than the state-of-the-art method.


翻译:查询两个顶端之间的最短路径是各种应用中的一项基本操作,已经对静态道路网络进行了广泛研究。然而,事实上,道路路段的交通成本随着时间变化而变化,因此,道路网络可以建成一个基于时间的图形。在本文中,我们研究大规模时间依赖道路网络的最短路径查询。现有工作侧重于一个等级分割结构,这使得指数构建和旅行费用查询效率低下。为了提高这些查询的效率,我们提议了一个新颖的索引,将道路网络分解成树结构,并在树上选择一套捷径,以加快查询处理。具体地说,我们首先正式界定了在树层脱腐蚀取决于时间的公路网络上的一个捷径选择问题。这个问题被证明是硬的,目的是选择和构建最有效的捷径设置。我们首先设计一种动态的编程方法,其精确的结果可以解决选择问题。为了迅速获得最佳捷径设置,我们设计了一个近似算算法,保证在树上有一个超标度的比例。基于新树结构和最短路径结构,我们设计了一种最短的快速的路径分析方法,我们用最接近的方法来展示我们最接近的路径的路径,从而显示我们最终的路径的路径的路径。我们用最接近式的路径测量方法来证明。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
15+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
15+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员