Adversarial training is a method for enhancing neural networks to improve the robustness against adversarial examples. Besides the security concerns of potential adversarial examples, adversarial training can also improve the generalization ability of neural networks, train robust neural networks, and provide interpretability for neural networks. In this work, we introduce adversarial training in time series analysis to enhance the neural networks for better generalization ability by taking the finance field as an example. Rethinking existing research on adversarial training, we propose the adaptively scaled adversarial training (ASAT) in time series analysis, by rescaling data at different time slots with adaptive scales. Experimental results show that the proposed ASAT can improve both the generalization ability and the adversarial robustness of neural networks compared to the baselines. Compared to the traditional adversarial training algorithm, ASAT can achieve better generalization ability and similar adversarial robustness.
翻译:对抗性培训是加强神经网络以提高对对抗性实例的稳健性的一种方法,除了潜在的对抗性实例的安全考虑外,对抗性培训还可以提高神经网络的普及能力,培训强大的神经网络,并为神经网络提供解释性。在这项工作中,我们引入时间序列分析方面的对抗性培训,以加强神经网络,通过以金融领域为例,提高一般化能力。在反思关于对抗性培训的现有研究时,我们提议在时间序列分析中采用适应性大小的对抗性培训(ASAT ), 将不同时空的数据与适应性尺度相调整。实验结果显示,拟议的反卫星项目既可以提高一般化能力,也可以提高神经网络相对于基线的对抗性强性。与传统的对抗性培训算法相比,反卫星可以实现更好的普及能力和类似的对抗性强性。