Knowing the position of the robot in the world is crucial for navigation. Nowadays, Bayesian filters, such as Kalman and particle-based, are standard approaches in mobile robotics. Recently, end-to-end learning has allowed for scaling-up to high-dimensional inputs and improved generalization. However, there are still limitations to providing reliable laser navigation. Here we show a proof-of-concept of the predictive processing-inspired approach to perception applied for localization and navigation using laser sensors, without the need for odometry. We learn the generative model of the laser through self-supervised learning and perform both online state-estimation and navigation through stochastic gradient descent on the variational free-energy bound. We evaluated the algorithm on a mobile robot (TIAGo Base) with a laser sensor (SICK) in Gazebo. Results showed improved state-estimation performance when comparing to a state-of-the-art particle filter in the absence of odometry. Furthermore, conversely to standard Bayesian estimation approaches our method also enables the robot to navigate when providing the desired goal by inferring the actions that minimize the prediction error.
翻译:了解机器人在世界上的位置对于导航至关重要 。 如今, 巴伊西亚过滤器, 如 Kalman 和 粒子基, 是移动机器人的标准方法 。 最近, 端到端的学习使得能够向高维输入扩展, 并改进一般化 。 但是, 提供可靠的激光导航仍然有局限性 。 我们在这里展示了一种对使用激光传感器, 无需观察测量, 使用激光传感器对定位和导航的感知进行预测性处理的验证。 我们通过自我监督的学习来学习激光的基因化模型, 并且通过变异自由能源的随机梯度下降进行在线状态估计和导航 。 我们用激光传感器( SICK) 对移动机器人( TIAGo Base) 的算法进行了评估 。 结果显示, 在与没有观察测量的状态的粒子过滤器比较时, 国家估计性表现得更好 。 此外, 与标准的巴伊斯估计方法相反, 我们的方法也使得机器人在提供理想目标时, 通过推断尽可能减少错误的预测, 也能导航 。