Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.
翻译:将离散概率分布和组合优化问题与神经网络元件结合在一起,具有许多应用,但提出了若干挑战。我们提出了隐性最大可能性估计(I-MLE),这是一个将离散指数家庭分布和不同神经元件相结合的模型的端到端学习框架。I-MLE广泛适用,因为它仅仅要求有能力计算最可能的情况,而并不依赖顺畅的放松。这个框架包含若干种办法,例如以扰动为基础的隐含差异和最近通过黑盒组合式理算法进行区分的方法。我们引入了一种新颖的噪音分配类别,用于通过perturb-and-MAP对接近边缘物进行近似性估计。此外,我们表明,I-MLE在使用最近研究的学习环境时,如果使用涉及组合解答器,则会简化到最大的可能性估计。对若干数据集的实验表明,I-MLE具有竞争力,而且往往比现有依靠问题特定解析的方法更强。