A present challenge in wireless communications is the assurance of ultra-reliable and low-latency communication (URLLC). While the reliability aspect is well known to be improved by channel coding with long codewords, this usually implies using interleavers, which introduce undesirable delay. Using short codewords is a needed change to minimizing the decoding delay. This work proposes the combination of a coding and decoding scheme to be used along with spatial signal processing as a means to provide URLLC over a fading channel. The paper advocates the use of random linear codes (RLCs) over a massive MIMO (mMIMO) channel with standard zero-forcing detection and guessing random additive noise decoding (GRAND). The performance of several schemes is assessed over a mMIMO flat fading channel. The proposed scheme greatly outperforms the equivalent scheme using 5G's polar encoding and decoding for signal-to-noise ratios (SNR) of interest. While the complexity of the polar code is constant at all SNRs, using RLCs with GRAND achieves much faster decoding times for most of the SNR range, further reducing latency.


翻译:在无线通信中,目前的一项挑战是保证超可靠和低时空通信(URLLC)的可靠性。虽然众所周知,可靠性方面通过使用长码字的频道编码得到了改进,但这通常意味着使用间叶器,造成不可取的延迟。使用短代字是一种必要的改变,以尽量减少解码延迟。这项工作建议结合空间信号处理,同时使用一个编码和解码办法,以便在一个淡化的频道上提供URLLC。纸上主张使用随机线性代码(RLCs),在大型MIMO(MMIMO)频道上使用随机线性代码,该频道的标准是零分辨检测和猜测随机添加噪音解码(GRAND),这通常意味着使用间断音器。一些计划的性能是通过一个 mIMO平面淡化通道进行评估的。拟议办法大大超越了使用5G极编码和解码的等同办法,用于信号到噪音的比率(SNRR),尽管所有SNRR都使用极性代码的复杂程度不变,但使用RACs与GRAND的解码速度要大大缩短。</s>

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员