Deep generative models have recently demonstrated the ability to synthesize photorealistic images of human faces with novel identities. A key challenge to the wide applicability of such techniques is to provide independent control over semantically meaningful parameters: appearance, head pose, face shape, and facial expressions. In this paper, we propose VariTex - to the best of our knowledge the first method that learns a variational latent feature space of neural face textures, which allows sampling of novel identities. We combine this generative model with a parametric face model and gain explicit control over head pose and facial expressions. To generate images of complete human heads, we propose an additive decoder that generates plausible additional details such as hair. A novel training scheme enforces a pose independent latent space and in consequence, allows learning of a one-to-many mapping between latent codes and pose-conditioned exterior regions. The resulting method can generate geometrically consistent images of novel identities allowing fine-grained control over head pose, face shape, and facial expressions, facilitating a broad range of downstream tasks, like sampling novel identities, re-posing, expression transfer, and more.


翻译:深基因模型最近展示了将人类面部的光现实图像与新特征合成的能力。这些技术的广泛应用所面临的一项关键挑战是如何独立控制具有语义意义的参数:外观、头部姿势、脸形和面部表情。在本文件中,我们建议VariTex(根据我们所知的最好的方法)学习神经面质的变异潜在空间的第一个方法,从而可以对新特征进行取样。我们将这种基因模型与面部模版模型结合起来,并获得对头部面容和面部表情的明确控制。为了生成完整的人类头部图像,我们建议了一个添加解码器,以产生其他貌似可信的细节,如发型。一个新颖的培训计划设置了一个独立的潜在空间,从而可以学习在潜在代码和外表调节区域之间的一对一的地图。由此产生的方法可以产生几何上一致的新身份图像,从而能够对头部面容、面形和面部表达方式进行精细的控制,从而便利一系列广泛的下游任务,例如取样新型身份、重新定位、表达方式转移等等。

0
下载
关闭预览

相关内容

【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
3+阅读 · 2019年6月5日
A Compact Embedding for Facial Expression Similarity
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员