Deep generative models have recently demonstrated the ability to synthesize photorealistic images of human faces with novel identities. A key challenge to the wide applicability of such techniques is to provide independent control over semantically meaningful parameters: appearance, head pose, face shape, and facial expressions. In this paper, we propose VariTex - to the best of our knowledge the first method that learns a variational latent feature space of neural face textures, which allows sampling of novel identities. We combine this generative model with a parametric face model and gain explicit control over head pose and facial expressions. To generate images of complete human heads, we propose an additive decoder that generates plausible additional details such as hair. A novel training scheme enforces a pose independent latent space and in consequence, allows learning of a one-to-many mapping between latent codes and pose-conditioned exterior regions. The resulting method can generate geometrically consistent images of novel identities allowing fine-grained control over head pose, face shape, and facial expressions, facilitating a broad range of downstream tasks, like sampling novel identities, re-posing, expression transfer, and more.
翻译:深基因模型最近展示了将人类面部的光现实图像与新特征合成的能力。这些技术的广泛应用所面临的一项关键挑战是如何独立控制具有语义意义的参数:外观、头部姿势、脸形和面部表情。在本文件中,我们建议VariTex(根据我们所知的最好的方法)学习神经面质的变异潜在空间的第一个方法,从而可以对新特征进行取样。我们将这种基因模型与面部模版模型结合起来,并获得对头部面容和面部表情的明确控制。为了生成完整的人类头部图像,我们建议了一个添加解码器,以产生其他貌似可信的细节,如发型。一个新颖的培训计划设置了一个独立的潜在空间,从而可以学习在潜在代码和外表调节区域之间的一对一的地图。由此产生的方法可以产生几何上一致的新身份图像,从而能够对头部面容、面形和面部表达方式进行精细的控制,从而便利一系列广泛的下游任务,例如取样新型身份、重新定位、表达方式转移等等。