We consider the approximation of the inverse square root of regularly accretive operators in Hilbert spaces. The approximation is of rational type and comes from the use of the Gauss-Legendre rule applied to a special integral formulation of the problem. We derive sharp error estimates, based on the use of the numerical range, and provide some numerical experiments. For practical purposes, the finite dimensional case is also considered. In this setting, the convergence is shown to be of exponential type.
翻译:我们考虑希尔伯特空格中定期适应操作员的反平方根的近似值。 近似值是理性的, 来源于对问题的特殊整体表述应用的高斯- 莱根德规则 。 我们根据数字范围的使用得出尖锐的误差估计值, 并提供一些数字实验。 为了实际目的, 也考虑有限维体案例 。 在这一背景下, 趋同值被显示为指数型 。