Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus has been on separate network estimation for each individual, which fails to leverage common patterns of information. We propose novel graph-theoretic approaches for estimating a population of dynamic networks that are able to borrow information across multiple heterogeneous samples in an unsupervised manner and guided by covariate information. Specifically, we develop a Bayesian product mixture model that imposes independent mixture priors at each time scan and uses covariates to model the mixture weights, which results in time-varying clusters of samples designed to pool information. The computation is carried out using an efficient Expectation-Maximization algorithm. Extensive simulation studies illustrate sharp gains in recovering the true dynamic network over existing dynamic connectivity methods. An analysis of fMRI block task data with behavioral interventions reveal sub-groups of individuals having similar dynamic connectivity, and identifies intervention-related dynamic network changes that are concentrated in biologically interpretable brain regions. In contrast, existing dynamic connectivity approaches are able to detect minimal or no changes in connectivity over time, which seems biologically unrealistic and highlights the challenges resulting from the inability to systematically borrow information across samples.


翻译:虽然关于动态连通方法的文献迅速增加,但主要重点是对每个人进行独立的网络估计,这无法利用共同的信息模式。我们提出了新的图形理论方法,用以估计能够以不受监督的方式在多种不同样本中借取信息的动态网络群集,并以共变信息为指导。具体地说,我们开发了一种贝叶斯产品混合模型,在每次扫描时都采用独立的混合物前科,并使用混合重量模型,从而得出混合重量模型,从而得出为汇集信息而设计的有时间变化的样本群。计算工作采用高效的预期-最大化算法进行。广泛的模拟研究显示,在恢复现有动态连通方法下的真正动态网络方面,取得了显著进展。对FMRI区任务数据进行的行为干预分析,揭示了具有类似动态连通性的个人分组,并查明了集中在可生物解释的大脑区域的与干预有关的动态网络变化。相比之下,现有的动态连通方法能够探测到连通性最小的或没有变化,而这些变化似乎在生物上不切实际,并突出由于无法系统地从不同样本中借用信息而产生的挑战。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月6日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员