We say that two given polynomials $f, g \in R[X]$, over a ring $R$, are equivalent under shifts if there exists a vector $a \in R^n$ such that $f(X+a) = g(X)$. Grigoriev and Karpinski (FOCS 1990), Lakshman and Saunders (SICOMP, 1995), and Grigoriev and Lakshman (ISSAC 1995) studied the problem of testing polynomial equivalence of a given polynomial to any $t$-sparse polynomial, over the rational numbers, and gave exponential time algorithms. In this paper, we provide hardness results for this problem. Formally, for a ring $R$, let $\mathrm{SparseShift}_R$ be the following decision problem. Given a polynomial $P(X)$, is there a vector $a$ such that $P(X+a)$ contains fewer monomials than $P(X)$. We show that $\mathrm{SparseShift}_R$ is at least as hard as checking if a given system of polynomial equations over $R[x_1,\ldots, x_n]$ has a solution (Hilbert's Nullstellensatz). As a consequence of this reduction, we get the following results. 1. $\mathrm{SparseShift}_\mathbb{Z}$ is undecidable. 2. For any ring $R$ (which is not a field) such that $\mathrm{HN}_R$ is $\mathrm{NP}_R$-complete over the Blum-Shub-Smale model of computation, $\mathrm{SparseShift}_{R}$ is also $\mathrm{NP}_{R}$-complete. In particular, $\mathrm{SparseShift}_{\mathbb{Z}}$ is also $\mathrm{NP}_{\mathbb{Z}}$-complete. We also study the gap version of the $\mathrm{SparseShift}_R$ and show the following. 1. For every function $\beta: \mathbb{N}\to\mathbb{R}_+$ such that $\beta\in o(1)$, $N^\beta$-gap-$\mathrm{SparseShift}_\mathbb{Z}$ is also undecidable (where $N$ is the input length). 2. For $R=\mathbb{F}_p, \mathbb{Q}, \mathbb{R}$ or $\mathbb{Z}_q$ and for every $\beta>1$ the $\beta$-gap-$\mathrm{SparseShift}_R$ problem is $\mathrm{NP}$-hard.
翻译:我们说,如果存在一个矢量 $(X+a) = g(X)美元,Grigoriev和Karpinski(FOCS 1990)、Lakshman和Saunds(SICOMP,1995),Grigoriev和Lakshman(ISAC 1995)研究了一个问题。如果存在一个矢量 $(R) 美元),那么,在一个环数 $(NR) =R[X] 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(R), 美元(R) 美元(R) 美元(R) 美元(R) 美元(R) 美元(美元(R) 美元(R) 美元(美元) 美元(R) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元) 美元(美元(美元) 美元(美元) 美元(美元) 美元(美元) (美元) (O(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (Ol) (美元) (美元) (美元) (O(美元) (O(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)(美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元)(美元) (美元)