We propose and analyze a class of particle methods for the Vlasov equation with a strong external magnetic field in a torus configuration. In this regime, the time step can be subject to stability constraints related to the smallness of Larmor radius. To avoid this limitation, our approach is based on higher-order semi-implicit numerical schemes already validated on dissipative systems [3] and for magnetic fields pointing in a fixed direction [9, 10, 12]. It hinges on asymptotic insights gained in [11] at the continuous level. Thus, when the magnitude of the external magnetic field is large, this scheme provides a consistent approximation of the guiding-center system taking into account curvature and variation of the magnetic field. Finally, we carry out a theoretical proof of consistency and perform several numerical experiments that establish a solid validation of the method and its underlying concepts.
翻译:我们提出并分析Vlasov 等式的粒子方法类别, 外磁场在托鲁斯配置中具有很强的外力磁场。 在这个系统中, 时间步骤可能受拉莫尔半径小的稳定性限制。 为了避免这一限制, 我们的方法是基于在散射系统[ 3] 上已经验证的更高阶半隐性数字计划, 以及指向固定方向的磁场的[ 9、 10、 12] 。 它取决于在 [11] 中获得的连续水平的无症状洞察。 因此, 当外部磁场的规模很大时, 这个办法考虑到磁场的曲线和变异性, 提供了指导中心系统的一致近似值。 最后, 我们从理论上证明一致性, 并进行数性实验, 以建立对方法及其基本概念的可靠验证。