We present generalized additive latent and mixed models (GALAMMs) for analysis of clustered data with responses and latent variables depending smoothly on observed variables. A scalable maximum likelihood estimation algorithm is proposed, utilizing the Laplace approximation, sparse matrix computation, and automatic differentiation. Mixed response types, heteroscedasticity, and crossed random effects are naturally incorporated into the framework. The models developed were motivated by applications in cognitive neuroscience, and two case studies are presented. First, we show how GALAMMs can jointly model the complex lifespan trajectories of episodic memory, working memory, and speed/executive function, measured by the California Verbal Learning Test (CVLT), digit span tests, and Stroop tests, respectively. Next, we study the effect of socioeconomic status on brain structure, using data on education and income together with hippocampal volumes estimated by magnetic resonance imaging. By combining semiparametric estimation with latent variable modeling, GALAMMs allow a more realistic representation of how brain and cognition vary across the lifespan, while simultaneously estimating latent traits from measured items. Simulation experiments suggest that model estimates are accurate even with moderate sample sizes.
翻译:我们提出了通用添加潜伏和混合模型(GALAMMS),用于分析根据观察到的变量顺利地根据所观测到的反应和潜在变量分析集成数据(GALAMMS)和潜在变量分析集成数据(GALAMMS)。提出了一个可伸缩的最大可能性估算算法,分别使用拉普尔近似值、稀薄矩阵计算和自动区分法。混合响应类型、异性性和跨随机效应自然地被纳入框架。开发模型的动机是应用认知神经科学,并介绍了两个案例研究。首先,我们展示了GALAMMS如何通过加利福尼亚口头学习测试(CVLT)、数字跨度测试和斯特罗普测试(Stroop Troop),共同模拟了集合记忆、工作记忆和速度/执行功能的复杂生命周期轨迹。接下来,我们利用教育和收入数据以及磁共振动成像估计的峰体体体积,研究社会经济状况对大脑结构的影响。通过将半参数估计与潜伏变型模型相结合,GALAMMMS能够更现实地描述大脑和认知寿命差异的复杂程度,同时估计从所测量的物品的潜在特征。模拟实验表明模型是准确的样本。