Our goal is to extend the denoising diffusion implicit model (DDIM) to general diffusion models~(DMs) besides isotropic diffusions. Instead of constructing a non-Markov noising process as in the original DDIM, we examine the mechanism of DDIM from a numerical perspective. We discover that the DDIM can be obtained by using some specific approximations of the score when solving the corresponding stochastic differential equation. We present an interpretation of the accelerating effects of DDIM that also explains the advantages of a deterministic sampling scheme over the stochastic one for fast sampling. Building on this insight, we extend DDIM to general DMs, coined generalized DDIM (gDDIM), with a small but delicate modification in parameterizing the score network. We validate gDDIM in two non-isotropic DMs: Blurring diffusion model (BDM) and Critically-damped Langevin diffusion model (CLD). We observe more than 20 times acceleration in BDM. In the CLD, a diffusion model by augmenting the diffusion process with velocity, our algorithm achieves an FID score of 2.26, on CIFAR10, with only 50 number of score function evaluations~(NFEs) and an FID score of 2.86 with only 27 NFEs. Code is available at https://github.com/qsh-zh/gDDIM


翻译:我们的目标是将去噪扩散隐式模型(DDIM)扩展到除了各向同性扩散之外的一般扩散模型(DMs)。我们并没有像原始的 DDIM 一样构建一个非马尔科夫的噪声过程,而是从数值的角度来研究 DDIM 的机理。我们发现,在解决相应的随机微分方程时,可以使用得分的一些特定逼近来获得 DDIM。我们提出了一个解释 DDIM 加速效果的解释,同时解释了确定性抽样方案比随机抽样方案更快速的优点。基于这个见解,我们通过微调得分网络的参数化,将 DDIM 扩展到一般 DMs 上,并称之为广义DDIM(gDDIM)。我们在两个非各向同性 DMs 上验证了 gDDIM:模糊扩散模型(BDM)和临界阻尼朗之万扩散模型(CLD)。我们观察到在 BDM 中的加速效果超过了 20 倍。在 CLD 中,这是一种通过增加速度来扩增扩散过程的扩散模型,我们的算法仅使用 50 个得分函数评估(NFEs)就在 CIFAR10 数据集上达到了 2.26 的 FID 效果分数,仅使用 27 个 NFEs 就达到了 2.86 的 FID 成效分数。代码在 https://github.com/qsh-zh/gDDIM)上可获得。

0
下载
关闭预览

相关内容

【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知会员服务
16+阅读 · 2022年11月13日
专知会员服务
18+阅读 · 2021年4月7日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知
0+阅读 · 2022年11月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
44+阅读 · 2022年9月6日
VIP会员
相关资讯
【NeurIPS2022】GENIE:高阶去噪扩散求解器
专知
0+阅读 · 2022年11月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员