This paper introduces a new latent variable generative model able to handle high dimensional longitudinal data and relying on variational inference. The time dependency between the observations of an input sequence is modelled using normalizing flows over the associated latent variables. The proposed method can be used to generate either fully synthetic longitudinal sequences or trajectories that are conditioned on several data in a sequence and demonstrates good robustness properties to missing data. We test the model on 6 datasets of different complexity and show that it can achieve better likelihood estimates than some competitors as well as more reliable missing data imputation. A code is made available at \url{https://github.com/clementchadebec/variational_inference_for_longitudinal_data}.
翻译:利用标准化流进行纵向数据的变分推断
本文介绍了一种新的潜在变量生成模型,能够处理高维纵向数据并且利用变分推断。输入序列中的观测之间的时间依赖性使用相关潜在变量的标准化流进行建模。所提出的方法可以用于生成完全合成的纵向序列,或是在多个序列数据上进行的轨迹生成,并且对缺失数据表现出了良好的鲁棒性属性。我们在6个不同复杂性的数据集上测试了该模型,并展示了其能够实现更好的似然估计以及更可靠的缺失数据插补。代码可在 \url{https://github.com/clementchadebec/variational_inference_for_longitudinal_data}上获得。