Over the past decade, deep neural networks have proven to be adept in image classification tasks, often surpassing humans in terms of accuracy. However, standard neural networks often fail to understand the concept of hierarchical structures and dependencies among different classes for vision related tasks. Humans on the other hand, seem to intuitively learn categories conceptually, progressively growing from understanding high-level concepts down to granular levels of categories. One of the issues arising from the inability of neural networks to encode such dependencies within its learned structure is that of subpopulation shift -- where models are queried with novel unseen classes taken from a shifted population of the training set categories. Since the neural network treats each class as independent from all others, it struggles to categorize shifting populations that are dependent at higher levels of the hierarchy. In this work, we study the aforementioned problems through the lens of a novel conditional supervised training framework. We tackle subpopulation shift by a structured learning procedure that incorporates hierarchical information conditionally through labels. Furthermore, we introduce a notion of graphical distance to model the catastrophic effect of mispredictions. We show that learning in this structured hierarchical manner results in networks that are more robust against subpopulation shifts, with an improvement up to 3\% in terms of accuracy and up to 11\% in terms of graphical distance over standard models on subpopulation shift benchmarks.


翻译:过去十年来,深心神经网络在图像分类任务中被证明是很好的,往往在准确性方面超过人类。然而,标准的神经网络往往不理解等级结构的概念和不同类别之间不同层次之间不同层次的依附性的概念,以开展与视觉有关的任务。另一方面,人类似乎在概念上直觉地学习类别,从理解高级别概念逐渐发展到粒子类别。神经网络无法在其所学结构内将这种依赖性编码成其所学结构的缺陷,由此产生的一个问题是亚人口结构变化 -- -- 模型从变化的训练既定类别中取而代之的新的隐蔽班级。由于神经网络将每一类视为独立于所有其他类别,因此它很难将处于较高层次的不断变化的人口分类。在这项工作中,我们通过一个新的有条件的有条件培训框架来研究上述问题。我们通过一个结构化的学习程序来解决亚人口结构变化问题,该程序将等级信息有条件地包含在标签上。此外,我们引入了一个图形距离的概念,以模拟错误的灾难性影响。我们发现,在结构化的等级结构化结构化模式中,在结构结构结构结构结构化的等级基础上,在结构结构结构结构化基础上,在结构结构结构结构结构上的改进后,在结构结构化基础上,在结构化基础上,在结构化基础上,在结构结构化基础上,在结构化基础上,在结构化基础上,在结构化基础上,在结构化基础上,在结构上的改进,在结构化的基础上,在结构化基础上,在结构化基础上,在结构化的基础上,在结构化基础上,在结构化基础上,在结构化的基础上,在结构化基础上,在结构上,在结构化的基础上,在结构化,在结构化,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构上,在结构化,在结构上,在结构上,在结构上,在结构上,在结构上,在结构化,在结构上,在结构上,在结构化的基础上,在结构上,在结构化,在结构上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构化的基础上,在结构上,

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员