Forecast combination is widely recognized as a preferred strategy over forecast selection due to its ability to mitigate the uncertainty associated with identifying a single "best" forecast. Nonetheless, sophisticated combinations are often empirically dominated by simple averaging, which is commonly attributed to the weight estimation error. The issue becomes more problematic when dealing with a forecast pool containing a large number of individual forecasts. In this paper, we propose a new forecast trimming algorithm to identify an optimal subset from the original forecast pool for forecast combination tasks. In contrast to existing approaches, our proposed algorithm simultaneously takes into account the robustness, accuracy and diversity issues of the forecast pool, rather than isolating each one of these issues. We also develop five forecast trimming algorithms as benchmarks, including one trimming-free algorithm and several trimming algorithms that isolate each one of the three key issues. Experimental results show that our algorithm achieves superior forecasting performance in general in terms of both point forecasts and prediction intervals. Nevertheless, we argue that diversity does not always have to be addressed in forecast trimming. Based on the results, we offer some practical guidelines on the selection of forecast trimming algorithms for a target series.


翻译:预测组合被公认为一种比预测选择更可取的战略,因为它能够减轻与确定单一“最佳”预测有关的不确定性。然而,复杂的组合往往在经验上以简单平均为主,通常归因于重量估计错误。当处理包含大量个别预测的预测集合时,这个问题就更成问题了。在本文中,我们提议一种新的预测裁剪算法,以便从最初预测集合中找出一个最佳子集,用于预测组合任务。与现有方法相反,我们提议的算法同时考虑到预测集合的稳健性、准确性和多样性问题,而不是孤立其中每一个问题。我们还制定了五个预测三联算法作为基准,包括一个三联不偏的算法和几个三联算法,将这三个关键问题中的每一个分离出来。实验结果表明,我们的算法在点预测和预测间隔方面总体上都实现了较好的预测业绩。然而,我们争辩说,与现有方法不同,我们提议的算法并不总要在预测三联算时处理多样性问题。根据结果,我们为目标序列选择预测三联算法提供了一些实际准则。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Retrieval Based Time Series Forecasting
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员