Probabilistic forecasting consists of stating a probability distribution for a future outcome based on past observations. In meteorology, ensembles of physics-based numerical models are run to get such distribution. Usually, performance is evaluated with scoring rules, functions of the forecast distribution and the observed outcome. With some scoring rules, calibration and sharpness of the forecast can be assessed at the same time. In deep learning, generative neural networks parametrize distributions on high-dimensional spaces and easily allow sampling by transforming draws from a latent variable. Conditional generative networks additionally constrain the distribution on an input variable. In this manuscript, we perform probabilistic forecasting with conditional generative networks trained to minimize scoring rule values. In contrast to Generative Adversarial Networks (GANs), no discriminator is required and training is stable. We perform experiments on two chaotic models and a global dataset of weather observations; results are satisfactory and better calibrated than what achieved by GANs.
翻译:概率预测包括根据以往的观测结果说明未来结果的概率分布。 在气象学中, 以物理为基础的数字模型组组群运行以获得这种分布。 通常, 性能评估时使用评分规则、 预测分布的功能和观察到的结果。 如果使用某些评分规则, 则可以同时评估预测的校准和清晰度。 在深层学习中, 基因神经网络将高维空间的分布状况作准, 并且通过从潜在变量中提取的图谱来方便取样。 有条件的基因化网络进一步限制了输入变量的分布。 在这个手稿中, 我们用有条件的基因化网络进行概率预测, 训练以尽量减少评分规则的价值 。 与Generative Aversarial 网络( GANs) 相比, 不需要歧视者, 并且培训是稳定的。 我们在两个混乱模型和气象观测的全球数据集上进行实验; 其结果比 GANs 所实现的结果令人满意, 也更好校准。