This paper addresses the problem of multi-step time series forecasting for non-stationary signals that can present sudden changes. Current state-of-the-art deep learning forecasting methods, often trained with variants of the MSE, lack the ability to provide sharp predictions in deterministic and probabilistic contexts. To handle these challenges, we propose to incorporate shape and temporal criteria in the training objective of deep models. We define shape and temporal similarities and dissimilarities, based on a smooth relaxation of Dynamic Time Warping (DTW) and Temporal Distortion Index (TDI), that enable to build differentiable loss functions and positive semi-definite (PSD) kernels. With these tools, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective for deterministic forecasting, that explicitly incorporates two terms supporting precise shape and temporal change detection. For probabilistic forecasting, we introduce STRIPE++ (Shape and Time diverRsIty in Probabilistic forEcasting), a framework for providing a set of sharp and diverse forecasts, where the structured shape and time diversity is enforced with a determinantal point process (DPP) diversity loss. Extensive experiments and ablations studies on synthetic and real-world datasets confirm the benefits of leveraging shape and time features in time series forecasting.
翻译:本文探讨了对可能带来突然变化的非静止信号进行多步时间序列预测的问题。目前最先进的深层次学习预测方法,往往经过MSE的变体培训,缺乏在确定性和概率背景下提供精确预测的能力。为了应对这些挑战,我们提议将形状和时间标准纳入深层模型的培训目标中。我们根据动态时间扭曲(DTW)和时间扭曲指数(TDI)的顺利放松,界定形状和时间相似性和差异性,以便能够建立不同的损失功能和积极的半确定性核心。我们利用这些工具,引入了DILATE(包括SHApe和TimE在内的损失和概率预测的特性),这是一个确定性预测的新目标,明确纳入了支持精确形状和时间变化检测的两个术语。关于概率预测,我们引入了STRIPE+(预测中的Shape和时间潜水器)和Timal CondictionRislity Increditional),一个框架,提供一套精确和多样化时间预测和合成时序的精确性时间序列,其中结构化的形状和合成数据模型和模型的模型和模型化数据模型化的模型化的模型和模型的模型化,可以证实和模型的模型的模型的多样化。