For problems in the calculus of cariations that exhibit the Lavrentiev phenomenon, it is known that the \textit{repulsion property} holds, that is, if one approximates the global minimizer in these problems by smooth functions, then the approximate energies will blow up. Thus standard numerical schemes, like the finite element method, may fail when applied directly to these type of problems. In this paper we prove that the repulsion property holds for variational problems in three dimensional elasticity that exhibit cavitation. In addition we propose a numerical scheme that circumvents the repulsion property, which is an adaptation of the Modica and Mortola functional for phase transitions in liquids, in which the phase function is coupled to the mechanical part of the stored energy functional, via the determinant of the deformation gradient. We show that the corresponding approximations by this method satisfy the lower bound $\Gamma$--convergence property in the multi-dimensional non--radial case. The convergence to the actual cavitating minimizer is established for a spherical body, in the case of radial deformations, and for the case of an elastic fluid without assuming radial symmetry.


翻译:对于在变分计算中出现拉夫连提耶夫现象的问题,已知存在排斥特性,即如果用平滑函数来逼近这些问题的全局极小值,则近似能量将会突增。因此,标准的数值方案(如有限元方法)直接应用于这些类型的问题可能会失败。在本文中,我们证明对于展现出空洞现象的三维弹性波动的变分问题,排斥特性成立。此外,我们提出了一种绕过排斥特性的数值方案,该方案是液体相变中Modica和Mortola函数(函数的相转移)的一种适应,其中相函数通过形变梯度行列式与存储能量函数的机械部分耦合。我们展示了通过该方法得到的相应近似满足非径向多维情况下的$\Gamma$-收敛性。对于球体的情况下,在径向形变的情况下推导了到实际空洞化极小值的收敛性,并且对于不假设径向对称的弹性流体的情况,也推导了其收敛性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】利用四叉树加速的单目实时稠密建图
泡泡机器人SLAM
28+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】利用四叉树加速的单目实时稠密建图
泡泡机器人SLAM
28+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员