Diffusion models have had a profound impact on many application areas, including those where data are intrinsically infinite-dimensional, such as images or time series. The standard approach is first to discretize and then to apply diffusion models to the discretized data. While such approaches are practically appealing, the performance of the resulting algorithms typically deteriorates as discretization parameters are refined. In this paper, we instead directly formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions. We prove that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure. Using our theory, we also develop guidelines for the design of infinite-dimensional diffusion models. For image distributions, these guidelines are in line with the canonical choices currently made for diffusion models. For other distributions, however, we can improve upon these canonical choices, which we show both theoretically and empirically, by applying the algorithms to data distributions on manifolds and inspired by Bayesian inverse problems or simulation-based inference.
翻译:暂无翻译