The manual annotation for large-scale point clouds is still tedious and unavailable for many harsh real-world tasks. Self-supervised learning, which is used on raw and unlabeled data to pre-train deep neural networks, is a promising approach to address this issue. Existing works usually take the common aid from auto-encoders to establish the self-supervision by the self-reconstruction schema. However, the previous auto-encoders merely focus on the global shapes and do not distinguish the local and global geometric features apart. To address this problem, we present a novel and efficient self-supervised point cloud representation learning framework, named 3D Occlusion Auto-Encoder (3D-OAE), to facilitate the detailed supervision inherited in local regions and global shapes. We propose to randomly occlude some local patches of point clouds and establish the supervision via inpainting the occluded patches using the remaining ones. Specifically, we design an asymmetrical encoder-decoder architecture based on standard Transformer, where the encoder operates only on the visible subset of patches to learn local patterns, and a lightweight decoder is designed to leverage these visible patterns to infer the missing geometries via self-attention. We find that occluding a very high proportion of the input point cloud (e.g. 75%) will still yield a nontrivial self-supervisory performance, which enables us to achieve 3-4 times faster during training but also improve accuracy. Experimental results show that our approach outperforms the state-of-the-art on a diverse range of downstream discriminative and generative tasks.
翻译:大型点云的手动说明仍然乏味,无法用于许多严酷的现实世界任务。 自我监督学习( 用于原始和未贴标签的数据, 用于原始和未贴标签的原始数据, 用于深心神经网络)是解决这一问题的一个很有希望的方法。 现有的作品通常需要自动校正者的共同帮助, 来建立由自重建的图案组成的自我监督。 然而, 先前的自动校正者仅仅关注全球形状, 并且没有区分本地和全球的精确度。 为了解决这个问题, 我们提出了一个新颖而高效的自监督的云度代表学习框架, 用于原始和未贴标签的原始数据, 用于预培训深层神经神经网络( 3D- OAE), 以便利本地地区和全球形状所继承的详细监管。 我们提议随机地将点云层的某些局部补丁混杂点建立监督, 并且通过使用其余的方法对隐蔽的补缺点进行检测。 具体地, 我们设计了一个基于标准变压的自我监督结构, 我们的自我监督的自我监督结构, 也基于标准的非观察点的自我监督的自我监督结构结构,, 将显示我们所设计的精细的精细的精细的机的自我分析的自我分析结果, 将显示到一个可见的自我分析结果的自我分析结果到一个清晰的自我分析到一个在可见的精细的自我分析过程的自我分析到一个直径变形到一个直到一个直到的自我分析过程。