项目名称: 基于深度学习的时序3D深度图动作语义理解

项目编号: No.61301299

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 季怡

作者单位: 苏州大学

项目金额: 24万元

中文摘要: 人类视觉系统基于眼睛获得的色彩,形状以及深度等信息,通过人脑的分析来获得对物体及动作的抽象语义。而通过机器学习来模拟这一过程对于智能监控,人机交互,视频检索等方面有重要的作用和意义。为此,本项目提出利用深度图和传统视频数据相结合,并使用深度学习来模拟人脑的多层神经元传递过程来实现对于人体动作不断变化过程中的动态语义理解。 研究内容及创新点体现在:1)用深度信念网实现对人体姿态从底层特征到抽象认知的多层无监督学习过程 2)将传统彩色视频数据和立体深度数据结合来构成多源竞争网络来模拟大脑皮层的视觉感知 3)通过对输入流在时间序列上的多层自学网络来模拟神经系统对于人体行为获得,分段,抽象,识别和理解的逐步认知过程。 这一基于感知,识别,记忆过程的系统不但可以提供机器视觉上高效的学习机制和识别能力,还可以进一步扩展及结合听觉,触觉等等多方面信道。

中文关键词: 图像行为分析;深度图;深度学习;机器视觉;

英文摘要: Based on color,shape or depth information from two eyes, human visual system obtains the abstract understanding of object and its activity through the analysis process of brains. Machine learning can immitate this process and occupy an important role in intelligent surveillance, human-machine ineraction and video analysis. This project propose to combine depth images with traditional video data and use deep learning to imitate the multi-layer neural network of human brain to understand the human behavior in a long hybrid sequence. The research topics and novelties are: 1) using deep belief netword to realize the process of unsuperviored learning; 2) combine traditional colorful video data and 3D depth image in a competitional netword to immitate the visual perception of human brains. 3) for input sequences of hybrid media, use multi-layer self-taughter netword to hybrid, detect cut, abtract concepts and recognition. Based on this precess of perception, recognition and memory, this system can not only improve the learning ability and recognition skill in computer vision, but also can be extended to broader areas such as touch or hearing.

英文关键词: Activity Analysis;Deep Learning;Depth Images;Conputer Vision;

成为VIP会员查看完整内容
2

相关内容

基于深度学习的视频超分辨率重构进展综述
专知会员服务
18+阅读 · 2022年3月7日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
29+阅读 · 2021年11月8日
专知会员服务
124+阅读 · 2021年6月19日
专知会员服务
46+阅读 · 2021年3月24日
专知会员服务
56+阅读 · 2021年3月5日
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
最新《深度学习人体姿态估计》综述论文,26页pdf
专知会员服务
39+阅读 · 2020年12月29日
基于深度学习的手语识别综述
专知会员服务
47+阅读 · 2020年5月18日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
图卷积在基于骨架的动作识别中的应用
极市平台
24+阅读 · 2019年6月4日
深度学习循环神经网络详解
七月在线实验室
16+阅读 · 2018年5月28日
【团队新作】连续情感识别,精准捕捉你的小情绪!
中国科学院自动化研究所
16+阅读 · 2018年4月17日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
22+阅读 · 2018年8月30日
小贴士
相关VIP内容
基于深度学习的视频超分辨率重构进展综述
专知会员服务
18+阅读 · 2022年3月7日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
29+阅读 · 2021年11月8日
专知会员服务
124+阅读 · 2021年6月19日
专知会员服务
46+阅读 · 2021年3月24日
专知会员服务
56+阅读 · 2021年3月5日
基于生理信号的情感计算研究综述
专知会员服务
62+阅读 · 2021年2月9日
最新《深度学习人体姿态估计》综述论文,26页pdf
专知会员服务
39+阅读 · 2020年12月29日
基于深度学习的手语识别综述
专知会员服务
47+阅读 · 2020年5月18日
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员