We propose a uniform block-diagonal preconditioner for condensed $H$(div)-conforming HDG schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning (ASP) technique \cite{Xu96}. A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.
翻译:我们建议为精密的H$(div)与HDG相一致的基于参数的马鞍问题(包括通用斯托克斯方程式和线性弹性方程式)提供一个统一的区块-对角先决条件,通过辅助空间先决条件技术(ASP),为全球速度/迁移空间的僵硬性矩阵获得一个最佳先决条件。还建造了与元素常压空间的舒尔补充相等的光谱近似,并通过Woodbury矩阵特性获得一个明确的可精确的反比。最后,数字结果证实了我们提议的在模型参数和网状尺寸方面的前提条件的稳健性。