We propose a space-time scheme that combines an unfitted finite element method in space with a discontinuous Galerkin time discretisation for the accurate numerical approximation of parabolic problems with moving domains or interfaces. We make use of an aggregated finite element space to attain robustness with respect to the cut locations. The aggregation is performed slab-wise to have a tensor product structure of the space-time discrete space, which is required in the numerical analysis. We analyse the proposed algorithm, providing stability, condition number bounds and anisotropic \emph{a priori} error estimates. A set of numerical experiments confirm the theoretical results for a parabolic problem on a moving domain. The method is applied for a mass transfer problem with changing topology.
翻译:我们提出一个空间时间计划,将空间中不适合的有限元素方法与不连续的加列金时间分离结合起来,以便精确地接近移动域或界面中的抛物线问题的数字。我们使用一个总限元素空间,以实现切断位置的稳健性。在计算分析中需要的时空离散空间的成份结构,该总合是按滑板来进行。我们分析了拟议的算法,提供了稳定性、条件号界限和偏差估计。一组数字实验证实了移动域中抛物线问题的理论结果。该方法用于处理与变化的地形学有关的大规模转移问题。