Partitioned methods allow one to build a simulation capability for coupled problems by reusing existing single-component codes. In so doing, partitioned methods can shorten code development and validation times for multiphysics and multiscale applications. In this work, we consider a scenario in which one or more of the "codes" being coupled are projection-based reduced order models (ROMs), introduced to lower the computational cost associated with a particular component. We simulate this scenario by considering a model interface problem that is discretized independently on two non-overlapping subdomains. We then formulate a partitioned scheme for this problem that allows the coupling between a ROM "code" for one of the subdomains with a finite element model (FEM) or ROM "code" for the other subdomain. The ROM "codes" are constructed by performing proper orthogonal decomposition (POD) on a snapshot ensemble to obtain a low-dimensional reduced order basis, followed by a Galerkin projection onto this basis. The ROM and/or FEM "codes" on each subdomain are then coupled using a Lagrange multiplier representing the interface flux. To partition the resulting monolithic problem, we first eliminate the flux through a dual Schur complement. Application of an explicit time integration scheme to the transformed monolithic problem decouples the subdomain equations, allowing their independent solution for the next time step. We show numerical results that demonstrate the proposed method's efficacy in achieving both ROM-FEM and ROM-ROM coupling.
翻译:分区方法允许您通过重新使用现有单元元代码来建立模拟能力, 以模拟同时出现的问题。 这样, 分割的方法可以缩短多物理和多尺度应用程序的代码开发和验证时间。 在此工作中, 我们考虑一种假设方案, 将一个或多个“ 代码” 结合在一起的基于投影的缩小顺序模型( ROMs), 引入该模型以降低与特定组件相关的计算成本。 我们模拟这个假设方案, 其方法是考虑一个模型界面问题, 在两个非重叠的子域上独立分离。 然后, 我们为此问题设计一个分割方案, 使每个子域的子域内有一个带有一定元素模型( FEM) 或其它子域的“ 代码” 的ROM“ 代码” 之间可以进行合并。 ROM“ 代码” 的构建方式是用一个光速或图解的解调组合来获得一个低维度的顺序基础。 我们随后在两个非重叠的子域域域域域域中绘制一个ROM和F“ 代码”, 然后用一个解算出一个数字式的公式, 来显示一个硬体的变式变式的图像, 将显示一个数字的图像, 解变式的图, 以显示一个数字的变式的图, 。