To accommodate numerous practical scenarios, in this paper we extend statistical inference for smoothed quantile estimators from finite domains to infinite domains. We accomplish the task with the help of a newly designed truncation methodology for discrete loss distributions with infinite domains. A simulation study illustrates the methodology in the case of several distributions, such as Poisson, negative binomial, and their zero inflated versions, which are commonly used in insurance industry to model claim frequencies. Additionally, we propose a very flexible bootstrap-based approach for the use in practice. Using automobile accident data and their modifications, we compute what we have termed the conditional five number summary (C5NS) for the tail risk and construct confidence intervals for each of the five quantiles making up C5NS, and then calculate the tail probabilities. The results show that the smoothed quantile approach classifies the tail riskiness of portfolios not only more accurately but also produces lower coefficients of variation in the estimation of tail probabilities than those obtained using the linear interpolation approach.


翻译:为了适应众多实际场景,本文将平滑分位数估计器的统计推断从有限域扩展到无限域。我们通过新设计的离散损失分布截断方法实现了此任务,该方法应用于具有无限域的分布,如泊松分布,负二项式分布及其零膨胀版本,这些分布通常用于保险行业中建模索赔频率。此外,我们提出了一种非常灵活的基于自助法的方法,可在实践中使用。利用汽车事故数据及其修改后的数据,我们通过计算所谓的条件五数汇总(C5NS)来计算尾部风险,并为组成C5NS的五个分位数构造置信区间,然后计算尾部概率。结果表明,与采用线性插值方法所获得的结果相比,平滑分位数方法不仅更准确地对资产组合的尾部风险进行了分类,而且还产生了更低的尾部概率估计方差。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
专知会员服务
77+阅读 · 2021年3月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
数据分析师应该知道的16种回归技术:岭回归
数萃大数据
15+阅读 · 2018年8月11日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
数据分析师应该知道的16种回归技术:Lasso回归
数萃大数据
16+阅读 · 2018年8月13日
数据分析师应该知道的16种回归技术:岭回归
数萃大数据
15+阅读 · 2018年8月11日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员