Post-market safety surveillance is an integral part of mass vaccination programs. Typically relying on sequential analysis of real-world health data as they accrue, safety surveillance is challenged by the difficulty of sequential multiple testing and by biases induced by residual confounding. The current standard approach based on the maximized sequential probability ratio test (MaxSPRT) fails to satisfactorily address these practical challenges and it remains a rigid framework that requires pre-specification of the surveillance schedule. We develop an alternative Bayesian surveillance procedure that addresses both challenges using a more flexible framework. We adopt a joint statistical modeling approach to sequentially estimate the effect of vaccine exposure on the adverse event of interest and correct for estimation bias by simultaneously analyzing a large set of negative control outcomes through a Bayesian hierarchical model. We then compute a posterior probability of the alternative hypothesis via Markov chain Monte Carlo sampling and use it for sequential detection of safety signals. Through an empirical evaluation using six US observational healthcare databases covering more than 360 million patients, we benchmark the proposed procedure against MaxSPRT on testing errors and estimation accuracy, under two epidemiological designs, the historical comparator and the self-controlled case series. We demonstrate that our procedure substantially reduces Type 1 error rates, maintains high statistical power, delivers fast signal detection, and provides considerably more accurate estimation. As an effort to promote open science, we present all empirical results in an R ShinyApp and provide full implementation of our method in the R package EvidenceSynthesis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员