Supervised machine learning requires a large amount of labeled data to achieve proper test results. However, generating accurately labeled segmentation maps on remote sensing imagery, including images from synthetic aperture radar (SAR), is tedious and highly subjective. In this work, we propose to alleviate the issue of limited training data by generating synthetic SAR images with the pix2pix algorithm. This algorithm uses conditional Generative Adversarial Networks (cGANs) to generate an artificial image while preserving the structure of the input. In our case, the input is a segmentation mask, from which a corresponding synthetic SAR image is generated. We present different models, perform a comparative study and demonstrate that this approach synthesizes convincing glaciers in SAR images with promising qualitative and quantitative results.
翻译:受监督的机器学习需要大量贴有标签的数据才能取得适当的测试结果。然而,在遥感图像(包括合成孔径雷达(SAR)的图像)上绘制贴有准确标签的分区图既乏味又具有高度主观性。在这项工作中,我们建议通过使用像素2pix算法生成合成合成合成合成合成合成孔径雷达图像来缓解有限的训练数据问题。这种算法使用有条件的基因对流网络(cGANs)来生成一个人工图像,同时保存输入的结构。就我们而言,输入是一个分离遮罩,产生相应的合成合成合成孔径雷达图像。我们展示了不同的模型,进行了比较研究,并证明这种方法将合成孔径雷达图像中的冰川与有希望的质量和数量结果结合起来。