Chest x-rays are a vital tool in the workup of many patients. Similar to most medical imaging modalities, they are profoundly multi-modal and are capable of visualising a variety of combinations of conditions. There is an ever pressing need for greater quantities of labelled data to develop new diagnostic tools, however this is in direct opposition to concerns regarding patient confidentiality which constrains access through permission requests and ethics approvals. Previous work has sought to address these concerns by creating class-specific GANs that synthesise images to augment training data. These approaches cannot be scaled as they introduce computational trade offs between model size and class number which places fixed limits on the quality that such generates can achieve. We address this concern by introducing latent class optimisation which enables efficient, multi-modal sampling from a GAN and with which we synthesise a large archive of labelled generates. We apply a PGGAN to the task of unsupervised x-ray synthesis and have radiologists evaluate the clinical realism of the resultant samples. We provide an in depth review of the properties of varying pathologies seen on generates as well as an overview of the extent of disease diversity captured by the model. We validate the application of the Fr\'echet Inception Distance (FID) to measure the quality of x-ray generates and find that they are similar to other high resolution tasks. We quantify x-ray clinical realism by asking radiologists to distinguish between real and fake scans and find that generates are more likely to be classed as real than by chance, but there is still progress required to achieve true realism. We confirm these findings by evaluating synthetic classification model performance on real scans. We conclude by discussing the limitations of PGGAN generates and how to achieve controllable, realistic generates.


翻译:切斯特 X 射线是许多病人检查过程中的一个重要工具。 与大多数医疗成像模式相似, 它们具有深刻的多模式性, 能够对各种条件组合进行视觉化。 越来越迫切需要增加贴标签数据的数量以开发新的诊断工具, 但是这与病人保密方面的担忧直接相反, 从而限制通过许可请求和道德认证获得服务的机会。 先前的工作是设法解决这些关注, 创建针对具体阶级的GAN, 合成图像来增加培训数据的临床真实性。 这些方法无法扩大规模, 因为它们引入模型大小与班级数字之间的计算交易, 从而对此类产品能够达到的质量设定固定的限值。 我们解决这一关切的方法是采用潜伏的班级优化, 使GAN能够高效、多模式的取样工具开发新的诊断工具, 并以此合成一个大型标签生成的档案。 我们用 PGGAN 来完成未加固化的X 合成的X 任务, 并让放射学家评估结果样本的临床真实真实真实性。 我们通过深度审查所看到的不同路径的特性的特性, 我们通过真实性分析来进行深度审查, 实现真实性分析它们的真实性分析。 通过真实性分析, 实现真实性分析, 通过模拟的深度分析, 复制性研究的深度分析, 复制性分析结果质量的模型可以产生其他的模型来验证这些结果。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员