Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order. We study the graph Laplacian associated with four tilings from the mutual local derivability class of the Penrose tiling, as well as the Ammann--Beenker tiling. In each case we exhibit locally-supported eigenfunctions, which necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings, which we collect at the end of the paper.
翻译:周期性替代砖块为准晶体提供了流行模型, 显示周期性秩序的材料。 我们研究了与Penrose砖块的本地可衍生品等级相联的四张瓦片相关的图解拉普拉西亚图, 以及Amman- Beenker砖块。 在每种情况下, 我们都展示了当地支持的乙型功能, 这必然导致这些模型国家综合密度的跳跃不连续。 通过将这些本地支持模式的多重性捆绑在一起, 在几种情况下, 我们提供了这次跳跃的具体下限 。 这些结果显示了一系列关于Laplacian在周期性砖块上的光谱性的问题, 我们在论文结尾收集了这些问题。