Motivated by applications in machine learning, we present a quantum algorithm for Gibbs sampling from a continuous real-valued function defined on a high dimensional torus. Our algorithm relies on techniques for solving linear systems and partial differential equations and performs zeroeth order queries to a quantum oracle computing the energy function. We then analyze the query and gate complexity of our algorithm and prove that the algorithm has a polylogarithmic dependence on approximation error (in total variation distance) and a polynomial dependence on the number of variables, although it suffers from an exponentially poor dependence on temperature.
翻译:在机器学习应用的推动下,我们提出了一个Gibbs取样的量子算法,该算法来自一个由高维线条定义的连续真实价值函数。我们的算法依赖于解决线性系统和部分差异方程式的技术,并且对计算能量函数的量子甲骨文进行零顺序查询。然后我们分析了我们的算法的查询和门的复杂程度,并证明算法对近似误差(在完全变异的距离内)和对变量数的多数值依赖性,尽管它对温度的依赖程度极低。