We develop a methodology for conducting inference on extreme quantiles of unobserved individual heterogeneity (heterogeneous coefficients, heterogeneous treatment effects, and other unobserved heterogeneity) in a panel data or meta-analysis setting. Examples of interest include productivity of most and least productive firms or prediction intervals for study-specific treatment effects in meta-analysis. Inference in such a setting is challenging. Only noisy estimates of unobserved heterogeneity are available, and approximations based on the central limit theorem work poorly for extreme quantiles. For this situation, under weak assumptions we derive an extreme value theorem for noisy estimates and appropriate rate and moment conditions. In addition, we develop a theory for intermediate order statistics. Both extreme and intermediate order theorems are then used to construct confidence intervals for extremal quantiles. The limiting distribution is non-pivotal, and we show consistency of both subsampling and simulating from the limit distribution. Furthermore, we provide a novel self-normalized intermediate order theorem. In a Monte Carlo exercise, we show that the resulting extremal confidence intervals have favorable coverage properties in the tail.
翻译:在小组数据或元分析中,我们开发了一种方法,用于在小组数据或元分析中,对未观察到的个体异异异性(异同系数、不同处理效应和其他未观察到的异异异性)的极端四分位数进行推断,例如,大多数和生产力最低的公司生产率或用于研究特定治疗在元分析中的效果的预测间隔。这种环境下的推断具有挑战性。只有对未观察到的异异异性进行噪音估计,而根据中心限制的近似对极端多异性作用不力。对于这种情况,我们根据虚弱的假设得出了噪音估计的极端值以及适当的速率和时间条件。此外,我们为中间顺序统计制定了一种理论。然后使用极端和中间顺序来为极端孔数构建信任间隔。限制分布是非突变的,我们从限制分布中显示出子取样和模拟的一致性。此外,我们提供了一种新型的自我调整中间顺序。在蒙特卡洛的演练中,我们展示了一种可信任度的底部。