Laplace's method is used to approximate intractable integrals in a wide range of statistical problems, including Bayesian inference and frequentist marginal likelihood models. It is classically known that the relative error rate of the approximation is not worse than $O_p(n^{-1})$ under standard regularity conditions, where $n$ is the sample size. It is unknown whether the error rate can be better than $O_p(n^{-1})$ in common applications. We provide the first statistical lower bounds showing that the $n^{-1}$ rate is tight. We prove stochastic lower bounds for two simple models: Bayesian inference on fair coin flips, and frequentist marginal likelihood estimation for an over-dispersed Poisson model. We conclude that any set of assumptions under which a faster rate can be derived must be so restrictive as to exclude these simple models, and hence the $n^{-1}$ rate is, for practical purposes, the best that can be obtained.
翻译:Laplace的方法用于在一系列广泛的统计问题,包括贝耶斯人的推论和常客主义的边缘可能性模型中,接近值的相对误差率不低于标准常规条件下的美元,标准常规条件下的美元为零,样本规模为美元,尚不清楚误差率是否可以优于美元(p) (n)-1}美元。我们提供了第一个低统计界限,显示美元-美元比率比较紧。我们证明两种简单模型的误差幅度较低:公平硬币页上的贝耶斯人的推论,以及过于分散的普瓦森模型的频繁边际可能性估计。我们的结论是,任何一套假设如果能够得出更快率,其限制性程度必须超过美元,从而排除这些简单模型,因此,美元-美元比率从实际意义上讲是最好的。