Deep learning based medical volumetric segmentation methods either train the model from scratch or follow the standard "pre-training then finetuning" paradigm. Although finetuning a well pre-trained model on downstream tasks can harness its representation power, the standard full finetuning is costly in terms of computation and memory footprint. In this paper, we present the first study on parameter-efficient transfer learning for medical volumetric segmentation and propose a novel framework named Med-Tuning based on intra-stage feature enhancement and inter-stage feature interaction. Given a large-scale pre-trained model on 2D natural images, our method can exploit both the multi-scale spatial feature representations and temporal correlations along image slices, which are crucial for accurate medical volumetric segmentation. Extensive experiments on three benchmark datasets (including CT and MRI) show that our method can achieve better results than previous state-of-the-art parameter-efficient transfer learning methods and full finetuning for the segmentation task, with much less tuned parameter costs. Compared to full finetuning, our method reduces the finetuned model parameters by up to 4x, with even better segmentation performance.
翻译:深度学习的医学体积分割方法要么从头开始训练模型,要么遵循标准的“预训练再微调”的范例。虽然在下游任务中微调预训练良好的模型可以利用其表示能力,但是标准的全量微调在计算和内存开销方面代价高昂。本文提出了对于医学体积分割的参数高效转移学习的第一个研究,并提出了一种基于阶内特征增强和阶间特征交互的新框架Med-Tuning。给定在二维自然图像上的大规模预训练模型,我们的方法可以利用多尺度空间特征表示和图像切片间的时间相关性,这对于准确的医学体积分割至关重要。对三个基准数据集(包括CT和MRI)进行的大量实验表明,我们的方法可以比以前的最先进的参数高效转移学习方法和全量微调方法实现更好的分割结果,并且具有更少的调整参数成本。与全量微调相比,我们的方法将微调模型参数减少了最多4倍,分割性能更好。