We present a (combinatorial) algorithm with running time close to $O(n^d)$ for computing the minimum directed $L_\infty$ Hausdorff distance between two sets of $n$ points under translations in any constant dimension $d$. This substantially improves the best previous time bound near $O(n^{5d/4})$ by Chew, Dor, Efrat, and Kedem from more than twenty years ago. Our solution is obtained by a new generalization of Chan's algorithm [FOCS'13] for Klee's measure problem. To complement this algorithmic result, we also prove a nearly matching conditional lower bound close to $\Omega(n^d)$ for combinatorial algorithms, under the Combinatorial $k$-Clique Hypothesis.
翻译:我们提出了一个运行时间接近于$O(n)的(compinator)算法,用于计算在任何不变维度的翻译下两组零点之间在任何不变维度下的两组零点之间的最低直接值($d)。这大大改进了Chew、Dor、Efrat和Kedem在20多年前设定的($(n)5d/4)美元附近的最佳前期。我们的解决办法是通过对Clee的测量问题对Chan的算法[FOCS'13]进行新的概括化。为了补充这一算法结果,我们还证明在Groupatoral $($-Cloque Hypothesis)下,对组合算法的有条件较低约束值接近$($(n)d)$($(n)美元)。</s>