The popularity of graph neural networks has triggered a resurgence of graph-based methods for single-label and multi-label text classification. However, it is unclear whether these graph-based methods are beneficial compared to standard machine learning methods and modern pretrained language models. We compare a rich selection of bag-of-words, sequence-based, graph-based, and hierarchical methods for text classification. We aggregate results from the literature over 5 single-label and 7 multi-label datasets and run our own experiments. Our findings unambiguously demonstrate that for single-label and multi-label classification tasks, the graph-based methods fail to outperform fine-tuned language models and sometimes even perform worse than standard machine learning methods like multilayer perceptron (MLP) on a bag-of-words. This questions the enormous amount of effort put into the development of new graph-based methods in the last years and the promises they make for text classification. Given our extensive experiments, we confirm that pretrained language models remain state-of-the-art in text classification despite all recent specialized advances. We argue that future work in text classification should thoroughly test against strong baselines like MLPs to properly assess the true scientific progress. The source code is available: https://github.com/drndr/multilabel-text-clf


翻译:图表神经网络的广度引发了以图形为基础的单一标签和多标签文本分类方法的死灰复燃。然而,这些以图表为基础的方法与标准的机器学习方法和现代预先培训的语言模型相比是否有益尚不清楚。我们比较了大量选择的一袋字、基于序列、基于图表和等级的文本分类方法。我们汇总了5个单一标签和7个多标签数据集的文献结果,并进行了自己的实验。我们的研究结果明确表明,单标签和多标签分类任务,基于图表的方法未能超过经精细调整的语言模型,有时甚至比标准机器学习方法差一些,如在一袋字上的多层过分(MLP)方法。这质疑过去几年为开发新的图表方法所做的大量努力,以及它们为文本分类所做的承诺。我们进行了广泛的实验,我们证实,尽管最近取得了各种专门的进展,但经过预先培训的语言模型仍然处于文本分类中状态。我们说,今后在文本分类方面开展的工作应该比标准的基线更彻底地测试,例如MLP/MLP-Malf-moltalex。我们正确地评估了真正的科学源。</s>

0
下载
关闭预览

相关内容

文本分类(Text Classification)任务是根据给定文档的内容或主题,自动分配预先定义的类别标签。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员