Decision making under uncertainty is critical to real-world, autonomous systems. Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex probability distributions. In this paper, we propose a generalization of MPC that represents a multitude of solutions as posterior distributions. By casting MPC as a Bayesian inference problem, we employ variational methods for posterior computation, naturally encoding the complexity and multi-modality of the decision making problem. We propose a Stein variational gradient descent method to estimate the posterior directly over control parameters, given a cost function and observed state trajectories. We show that this framework leads to successful planning in challenging, non-convex optimal control problems.
翻译:在不确定情况下进行决策对于现实世界的自主系统至关重要。 模型预测控制(MPC)方法在实践中表现良好,但在处理复杂概率分布时仍然有限。 在本文中,我们提议对多用途控制(MPC)进行概括化,它代表了多种后方分布的解决方案。 通过将多用途控制(MPC)作为一个巴伊西亚推论问题,我们采用了后方计算方法,自然地将决策问题的复杂性和多式编码。我们提议采用斯坦可变梯度下降方法,根据成本函数和观察到的州轨迹,直接估计后方参数相对于控制参数的后端值。我们显示,这一框架导致在具有挑战性、非康韦克斯最佳控制问题上的成功规划。