This work aims to advance computational methods for projection-based reduced order models (ROMs) of linear time-invariant (LTI) dynamical systems. For such systems, current practice relies on ROM formulations expressing the state as a rank-1 tensor (i.e., a vector), leading to computational kernels that are memory bandwidth bound and, therefore, ill-suited for scalable performance on modern many-core and hybrid computing nodes. This weakness can be particularly limiting when tackling many-query studies, where one needs to run a large number of simulations. This work introduces a reformulation, called rank-2 Galerkin, of the Galerkin ROM for LTI dynamical systems which converts the nature of the ROM problem from memory bandwidth to compute bound. We present the details of the formulation and its implementation, and demonstrate its utility through numerical experiments using, as a test case, the simulation of elastic seismic shear waves in an axisymmetric domain. We quantify and analyze performance and scaling results for varying numbers of threads and problem sizes. Finally, we present an end-to-end demonstration of using the rank-2 Galerkin ROM for a Monte Carlo sampling study. We show that the rank-2 Galerkin ROM is one order of magnitude more efficient than the rank-1 Galerkin ROM (the current practice) and about 970X more efficient than the full order model, while maintaining accuracy in both the mean and statistics of the field.


翻译:这项工作旨在推进基于投影的线性时差动态系统的降低定序模型(ROMs)的计算方法。对于这些系统,目前的做法依赖于将状态表达为一至一强(即矢量)级(即矢量)的ROM配方,从而导致内存带宽的计算内核,因此不适合现代多核心和混合计算节点上可缩放的性能。在处理许多需要进行大量模拟的阵列研究时,这一弱点可能特别有限。对于这些系统,这项工作采用了一种名为二级Galerkin ROM的重塑,将状态表达为一级至一级(即矢量),将存储带宽问题的性质转换为一级(即矢量),从而导致计算核心内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员