Much progress has been made in semi-supervised learning (SSL) by combining methods that exploit different aspects of the data distribution, e.g. consistency regularisation relies on properties of $p(x)$, whereas entropy minimisation pertains to the label distribution $p(y|x)$. Focusing on the latter, we present a probabilistic model for discriminative SSL, that mirrors its classical generative counterpart. Under the assumption $y|x$ is deterministic, the prior over latent variables becomes discrete. We show that several well-known SSL methods can be interpreted as approximating this prior, and can be improved upon. We extend the discriminative model to neuro-symbolic SSL, where label features satisfy logical rules, by showing such rules relate directly to the above prior, thus justifying a family of methods that link statistical learning and logical reasoning, and unifying them with regular SSL.
翻译:半监督学习(SSL)取得了很大进展,它综合了利用数据分布不同方面的方法,例如一致性的正规化依赖于美元(x)美元,而最小化则与标签分配(y ⁇ x)美元有关。以后者为焦点,我们提出了具有歧视性的SSL的概率模型,这反映了其典型的变异对应方。根据美元(x)是确定性的假设,先前的潜伏变量变得离散。我们表明,一些众所周知的SSL方法可以被解释为类似于先前的,可以改进。我们把歧视模式扩大到神经-symboli SSL,因为标签特征符合逻辑规则,展示这些规则直接与前面的规则,从而证明将统计学习与逻辑推理联系起来的方法的组合是合理的,并将它们与常规的SSL统一起来。