Deep neural networks are increasingly being used for the analysis of medical images. However, most works neglect the uncertainty in the model's prediction. We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction by a pipeline of a Convolutional Neural Network and a sparse Gaussian Process. Furthermore, we adapt different pre-training methods to investigate their impacts on the proposed model. We apply our approach to Bone Age Prediction and Lesion Localization. In most cases, the proposed model shows better performance compared to common architectures. More importantly, our model expresses systematically higher confidence in more accurate predictions and less confidence in less accurate ones. Our model can also be used to detect challenging and controversial test samples. Compared to related methods such as Monte-Carlo Dropout, our approach derives the uncertainty information in a purely analytical fashion and is thus computationally more efficient.
翻译:深度神经网络正越来越多地用于分析医学图像。然而,大多数工作都忽略了模型预测的不确定性。我们提议了一个具有不确定性的深内核学习模型,以便通过一个革命神经网络管道和一个稀疏的高斯进程来估计预测中的不确定性。此外,我们调整了不同的培训前方法,以调查其对拟议模型的影响。我们运用了我们的方法来调查它们对于骨骼时代预测和失落定位的影响。在多数情况下,拟议的模型显示的性能比共同结构要好。更重要的是,我们的模型系统地表示对更准确的预测的信心更高,对不太准确的预测则不那么信任。我们的模型还可以用来探测具有挑战性和争议性的测试样本。与蒙特-卡洛·格林特等相关方法相比,我们的方法以纯粹的分析方式获取不确定性信息,从而提高了计算效率。