Model parameter regularization is a widely used technique to improve generalization, but also can be used to shape the weight distributions for various purposes. In this work, we shed light on how weight regularization can assist model quantization and compression techniques, and then propose range regularization (R^2) to further boost the quality of model optimization by focusing on the outlier prevention. By effectively regulating the minimum and maximum weight values from a distribution, we mold the overall distribution into a tight shape so that model compression and quantization techniques can better utilize their limited numeric representation powers. We introduce L-inf regularization, its extension margin regularization and a new soft-min-max regularization to be used as a regularization loss during full-precision model training. Coupled with state-of-the-art quantization and compression techniques, models trained with R^2 perform better on an average, specifically at lower bit weights with 16x compression ratio. We also demonstrate that R^2 helps parameter constrained models like MobileNetV1 achieve significant improvement of around 8% for 2 bit quantization and 7% for 1 bit compression.


翻译:模型参数的正规化是一种广泛应用的技术,可以改进一般化,但也可以用来为各种目的塑造重量分布。在这项工作中,我们说明了重量正规化如何有助于模型量化和压缩技术,然后建议范围正规化(R2/2),以便通过注重外部预防进一步提高模型优化的质量。我们通过有效地调节分布中最小和最大重量值,将整体分布模拟成一个紧凑的形状,以便模型压缩和定量化技术能够更好地利用其有限的数字代表能力。我们引入了L-inf正规化、其扩展边距正规化和新的软最小值正规化,以便在全面精密模型培训中用作正规化损失。与最先进的量化和压缩技术相结合,经过R%2培训的模型在平均上表现更好,特别是在低位重量和16x压缩比率下。我们还证明R%2帮助诸如PlopNetV1号的受限参数模型在2位化和1位压缩中取得了约8%的显著改进。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年10月31日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Stream Efficient Learning
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员