Today's graphics processing unit (GPU) applications produce vast volumes of data, which are challenging to store and transfer efficiently. Thus, data compression is becoming a critical technique to mitigate the storage burden and communication cost. LZSS is the core algorithm in many widely used compressors, such as Deflate. However, existing GPU-based LZSS compressors suffer from low throughput due to the sequential nature of the LZSS algorithm. Moreover, many GPU applications produce multi-byte data (e.g., int16/int32 index, floating-point numbers), while the current LZSS compression only takes single-byte data as input. To this end, in this work, we propose GPULZ, a highly efficient LZSS compression on modern GPUs for multi-byte data. The contribution of our work is fourfold: First, we perform an in-depth analysis of existing LZ compressors for GPUs and investigate their main issues. Then, we propose two main algorithm-level optimizations. Specifically, we (1) change prefix sum from one pass to two passes and fuse multiple kernels to reduce data movement between shared memory and global memory, and (2) optimize existing pattern-matching approach for multi-byte symbols to reduce computation complexity and explore longer repeated patterns. Third, we perform architectural performance optimizations, such as maximizing shared memory utilization by adapting data partitions to different GPU architectures. Finally, we evaluate GPULZ on six datasets of various types with NVIDIA A100 and A4000 GPUs. Results show that GPULZ achieves up to 272.1X speedup on A4000 and up to 1.4X higher compression ratio compared to state-of-the-art solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员