Quantum algorithms promise quadratic or exponential speedups for applications in cryptography, chemistry and material sciences. The topologies of today's quantum computers offer limited connectivity, leading to significant overheads for implementing such quantum algorithms. One-dimensional topology displacements that remedy these limits have been recently demonstrated for architectures based on Rydberg atoms, and they are possible in principle in photonic and ion trap architectures. We present the first optimal quantum circuit-to-architecture mapping algorithm that exploits such one-dimensional topology displacements. We benchmark our method on quantum circuits with up to 15 qubits and investigate the improvements compared with conventional mapping based on inserting swap gates into the quantum circuits. Depending on underlying technology parameters, our approach can decrease the quantum circuit depth by up to 58% and increase the fidelity by up to 29%. We also study runtime and fidelity requirements on one-dimensional displacements and swap gates to derive conditions under which one-dimensional topology displacements provide benefits.
翻译:量子运算法承诺对加密、化学和材料科学的应用进行二次或指数加速。 今天量子计算机的地形提供了有限的连通性,导致实施这种量子算法的重要间接成本。 以Rydberg原子为基础的建筑结构最近展示了纠正这些极限的一维地形迁移,这些极限在光学和离子捕捉结构中原则上是可能的。 我们提出了第一个利用这种一维地形迁移的最佳量子电路到建筑绘图算法。 我们用最多15公尺的量子电路来衡量我们的方法,并调查与在量子电路中插入交换门的常规绘图相比的改进。 根据基本技术参数,我们的方法可以将量子电路深度降低58%,并将精确度提高至29%。 我们还研究了一维电路迁移和交换门的运行时间和准确性要求,以得出单维地形迁移的好处条件。