The partition function and free energy of a quantum many-body system determine its physical properties in thermal equilibrium. Here we study the computational complexity of approximating these quantities for $n$-qubit local Hamiltonians. First, we report a classical algorithm with $\mathrm{poly}(n)$ runtime which approximates the free energy of a given $2$-local Hamiltonian provided that it satisfies a certain denseness condition. Our algorithm combines the variational characterization of the free energy and convex relaxation methods. It contributes to a body of work on efficient approximation algorithms for dense instances of optimization problems which are hard in the general case, and can be viewed as simultaneously extending existing algorithms for (a) the ground energy of dense $2$-local Hamiltonians, and (b) the free energy of dense classical Ising models. Secondly, we establish polynomial-time equivalence between the problem of approximating the free energy of local Hamiltonians and three other natural quantum approximate counting problems, including the problem of approximating the number of witness states accepted by a QMA verifier. These results suggest that simulation of quantum many-body systems in thermal equilibrium may precisely capture the complexity of a broad family of computational problems that has yet to be defined or characterized in terms of known complexity classes. Finally, we summarize state-of-the-art classical and quantum algorithms for approximating the free energy and show how to improve their runtime and memory footprint.


翻译:量子多体系统的分区函数和自由能量在热平衡中决定其物理特性。 在这里, 我们研究这些数量对于当地汉密尔顿人的计算复杂性。 首先, 我们用美元- qubt当地汉密尔顿人的计算法报告一个传统算法, 其运行时间接近于给定的2美元本地汉密尔顿人的免费能量。 其次, 我们的算法结合了自由能量和康韦克斯放松方法的变异特性。 它有助于为一般情况下难以解决的密集优化问题而制定高效近似算法, 并且可以被视为同时扩展以下两方面的现有算法:(a) 密集的2美元本地汉密尔密尔顿人的地面能量,以及(b) 密集的经典伊密尔密尔密尔密尔顿人模型的免费能量。 其次, 我们把地方汉密尔密尔密尔密尔顿人自由能量的近似特性和其他三种自然量测算方法结合起来。 它有助于解决一般情况下难以接受的高度优化的证人国家数目的问题, 并且可以视为同时扩展现有的算算算法的( ) 。 这些结果可以用来模拟许多已知的 的能量序列的计算系统 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
7+阅读 · 2021年10月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年12月30日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
7+阅读 · 2021年10月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员