This paper introduces a novel method for the efficient and accurate computation of volume fractions on unstructured polyhedral meshes, where the phase boundary is an orientable hypersurface, implicitly given as the iso-contour of a sufficiently smooth level-set function. Locally, i.e.~in each mesh cell, we compute a principal coordinate system in which the hypersurface can be approximated as the graph of an osculating paraboloid. A recursive application of the \textsc{Gaussian} divergence theorem then allows to analytically transform the volume integrals to curve integrals associated to the polyhedron faces, which can be easily approximated numerically by means of standard \textsc{Gauss-Legendre} quadrature. This face-based formulation enables the applicability to unstructured meshes and considerably simplifies the numerical procedure for applications in three spatial dimensions. We discuss the theoretical foundations and provide details of the numerical algorithm. Finally, we present numerical results for convex and non-convex hypersurfaces embedded in cuboidal and tetrahedral meshes, showing both high accuracy and third- to fourth-order convergence with spatial resolution.
翻译:本文引入了一种高效和准确计算非结构化多元面模中体积分数的新方法, 即相位边界是可调整的超表层, 隐含地表示一个足够平滑水平设置函数的等离子体。 本地, 即 ~ 在每个网状单元格中, 我们计算了一个主协调系统, 这个系统可以将超表层近似为悬浮类素的图示。 一个循环应用 \ textsc{ Gausian} 差异的词典, 从而可以分析地将体积组合转换成与多元面相联的曲线组合体, 以标准 \ textsc{ Gaus- legendre} 二次方形来比较。 这个基于面的公式可以使超表层相近似于不结构的 meshes, 并大大简化了三个空间维度应用的数值程序。 我们讨论理论基础, 并提供数字算法的细节。 最后, 我们为 conx 和非convex 高度表层和第四空间分辨率显示高分辨率, 以及高分辨率显示高分辨率至高分辨率。